Tuesday, February 4, 2014

Anna University-Mathematics 2nd sem B.E Syllabus

Anna University-Regulation 2008, Credit System Mathematics 2nd sem B.E Civil Engineering Syllabus 

MA2161                  MATHEMATICS – II                             L T P C                     3 1 0 4

Unit-I  Ordinary Differential Equations                                                                          12
Higher order linear differential equations with constant coefficients – Method of variation of
parameters – Cauchy’s and Legendre’s linear equations – Simultaneous first order linear
equations with constant coefficients.

Unit-II Vector Calculus                                                                                               12
Gradient Divergence and Curl – Directional derivative – Irrotational and solenoidal vector fields
– Vector integration – Green’s theorem in a plane, Gauss divergence theorem and stokes’
theorem (excluding proofs) – Simple applications involving cubes and rectangular parallelpipeds.

Unit-III Analytic Functions                                                                                         12 
Functions of a complex variable – Analytic functions – Necessary conditions, Cauchy – 
Riemann equation and Sufficient conditions (excluding proofs) – Harmonic and orthogonal 
properties of analytic function – Harmonic conjugate – Construction of analytic functions – 
Conformal mapping : w= z+c, cz, 1/z, and bilinear transformation. 

Unit-IV Complex Integration                                                                                     12 
Complex integration – Statement and applications of Cauchy’s integral theorem and Cauchy’s 
integral formula – Taylor and Laurent expansions – Singular points – Residues – Residue 
theorem – Application of residue theorem to evaluate real integrals – Unit circle and semi-
circular contour(excluding poles on boundaries). 

Unit-V Laplace Transfrom                                                                                         12 
Laplace transform – Conditions for existence – Transform of elementary functions – Basic 
properties – Transform of derivatives and integrals – Transform of unit step function and 
impulse functions – Transform of periodic functions. 
Definition of Inverse Laplace transform as contour integral – Convolution theorem (excluding 
proof) – Initial and Final value theorems – Solution of linear ODE of second order with constant 
coefficients using Laplace transformation techniques. 
 
                                                                                                     TOTAL : 60 PERIODS 
TEXT BOOK: 
1. Bali N. P and Manish Goyal, “Text book of Engineering Mathematics”, 3rd Edition, Laxmi 
Publications (p) Ltd., (2008). 
2. Grewal. B.S, “Higher Engineering Mathematics”, 40th Edition, Khanna Publications, Delhi, 
(2007). 
 
REFERENCES 
1. Ramana B.V, “Higher Engineering Mathematics”,Tata McGraw Hill Publishing Company, 
New Delhi, (2007). 
2. Glyn James, “Advanced Engineering Mathematics”, 3rd Edition, Pearson Education, (2007). 
3. Erwin Kreyszig, “Advanced Engineering Mathematics”, 7th Edition, Wiley India, (2007). 
4. Jain R.K and Iyengar S.R.K, “Advanced Engineering Mathematics”, 3rd Edition, Narosa 
Publishing House Pvt. Ltd., (2007
Share This
Previous Post
Next Post

B.E Civil Engineer Graduated from Government College of Engineering Tirunelveli in the year 2016. She has developed this website for the welfare of students community not only for students under Anna University Chennai, but for all universities located in India. That's why her website is named as www.IndianUniversityQuestionPapers.com . If you don't find any study materials that you are looking for, you may intimate her through contact page of this website to know her so that it will be useful for providing them as early as possible. You can also share your own study materials and it can be published in this website after verification and reviewing. Thank you!

0 comments:

Pen down your valuable important comments below

Search Everything Here